Clonal Selection Algorithm with Dynamic Population Size for Bimodal Search Spaces
نویسندگان
چکیده
In this article an Immune Algorithm (IA) with dynamic population size is presented. Unlike previous IAs and Evolutionary Algorithms (EAs), in which the population dimension is constant during the evolutionary process, the population size is computed adaptively according to a cloning threshold. This not only enhances convergence speed but also gives more chance to escape from local minima. Extensive simulations are performed on trap functions and their performances are compared both quantitatively and statistically with other immune and evolutionary optmization methods.
منابع مشابه
Optimization in Uncertain and Complex Dynamic Environments with Evolutionary Methods
In the real world, many of the optimization issues are dynamic, uncertain, and complex in which the objective function or constraints can be changed over time. Consequently, the optimum of these issues is changed nonlinearly. Therefore, the optimization algorithms not only should search the global optimum value in the space but also should follow the path of optimal change in dynamic environmen...
متن کاملA New Immune Algorithm and Its Application
The traditional single clonal selection algorithm has a lot of disadvantages, for example, it is easy to be trapped into local optima, and it has a lot of massive redudacy iteration in its later period and inferior global search ability and so on. In this paper, a new artificial immune algorithm is proposed based on the clonal selection theory and the structure of anti-idiotype(IAAI), which is ...
متن کاملA hybrid CS-SA intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demands
This paper aims at proposing a quadratic assignment-based mathematical model to deal with the stochastic dynamic facility layout problem. In this problem, product demands are assumed to be dependent normally distributed random variables with known probability density function and covariance that change from period to period at random. To solve the proposed model, a novel hybrid intelligent algo...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملOptimum Design of Scallop Domes for Dynamic Time History Loading by Harmony Search-Firefly Algorithm
This paper presents an efficient meta-heuristic algorithm for optimization of double-layer scallop domes subjected to earthquake loading. The optimization is performed by a combination of harmony search (HS) and firefly algorithm (FA). This new algorithm is called harmony search firefly algorithm (HSFA). The optimization task is achieved by taking into account geometrical and material nonlinear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006